Application-Aware Network Coding

Improving Video and TCP Performance over Coded Wireless Networks

Hülya Seferoğlu University of California, Irvine

My work

 Interaction and joint optimization of NC and higher layers over wireless mesh networks

• NC + video streaming

o NC + TCP

Dynamic FEC for Video

The network coding paradigm

 Idea: allow intermediate nodes to combine incoming packets before forwarding them

- o Benefits in throughput and distributed scheduling
- o Applications in p2p and wireless mesh networks

Application to wireless mesh networks

- Y. Wu, P. A. Chou, S. Y. Kung, "Information exchange in wireless network coding and physical layer broadcast", [CISS '05]
- S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, J.Crowcroft "XORs In The Air: Practical Wireless Network Coding, (COPE)", [ToN '08]
- Throughput increases by mixing packets

My work

- Interaction and joint optimization of NC and higher layers over wireless mesh networks
 - NC + video streaming
 - o Prioritized transmission
 - o Delay requirements
 - Rate requirements
 - o NC + TCP
- o Dynamic FEC for Video

Video-aware opportunistic network coding

[Seferoglu, Markopoulou, Packet Video 07, JSAC 09]

- NC is agnostic to the contents of network codes
- Key observation: the content (not only the number) of packets matters

Network coding for wireless mesh

[COPE: XORs in the Air, Katti, Katabi et al. Sigcomm 06]

Candidate codes for p₁=A₁:

$$c_{1}^{1} = A_{1}$$
 $c_{2}^{1} = A_{1} + B_{1}$
 $c_{3}^{1} = A_{1} + C_{1}$
 $c_{4}^{1} = A_{1} + B_{1} + C_{1}$

 In general, candidate codes for primary packet p_i:

$$c_k^i = p_i \bigcup S_k^{t(p_i)}$$

all subsets of virtual buffer

$$S_k^{t(p_i)}$$
 $k = 1,...,2^{\Psi_{t(p_i)}}$

Which code to choose to maximize total video quality?

Overview

Choose the network code to Formulate this problem maximize video quality

within RaDiO framework

NCV

Network coding for video

- o Primary packet (p_i) : 1st packet in the queue
- o Choose code c_k^j that brings maximum quality improvement I_k^j

Choose side packets

$$\max_{k} (I_k^i)$$

NCVD

NCV+depth (choosing the primary packet)

o Primary packet (p_i) : Any packet in the queue

A_1 is primary packet

Network Codes	<u>Decodability</u>
$c_1 = A_1$	only A decodes
$c_2 = A_1 + B_1$	only A decodes
$c_3 = A_1 + C_1$	A and C decode
$c_4 = A_1 + B_1 + C_1$	A and C decode

B_1 is primary packet

Network Codes	Decodability
$c'_1 = B_1$	only B decodes
$c'_{2} = B_{1} + C_{1}$	B and C decode
$c'_3 = B_1 + A_2$	A and B decode
$c'_4 = B_1 + C_1 + A_2$	A, B, C decode

Choose primary and side packets

$$\max_{p_i} \max_k (I_k^i)$$

NC-RaDiO

Rate-distortion optimized network coding

Distortion Function

Lagrangian relaxation

Maximize Lagrange parameters:

Choose transmitting node and primary and side packets

$$\max_{\{n,c_u\}} \{\lambda_n(c_u)\} = \max_{\{n,c_u\}} \left\{ \frac{\sum_{p_j \in c_u} \gamma(j) \Delta(j) P_p(j) (1 - P_c(\pi_n(j)))}{\max_{p_j \in c_u} \{B(j)\}} \right\}$$

NC-RaDiO NCVD as a special case

$$\lambda_n(c_u) = \frac{\sum_{p_j \in c_u} \gamma(j) \Delta(j) P_p(j) (1 - P_c(\pi_n(j)))}{\max_{p_j \in c_u} \{B(j)\}}$$

- Equal packet sizes; B(j) = B
- Deterministic rules on $P_p(j)$
- $P_c(\pi_n(j))$ is re-written in terms of P(j), $d(\pi_n(j))$

NC-RaDiO

$$\lambda'_{n}(c_{u}) = \sum_{p_{j} \in c_{u} \text{ s.t.} T(j) > RTT} \gamma(j) \Delta(j) (1 - P(j)) d(\pi_{n}(j)) \longleftrightarrow I_{k}^{i} = \sum_{n=1}^{N} \sum_{l=1}^{L_{k}} (1 - P(l)) \gamma(l) \Delta(l) g_{l}^{k}(n) d_{l}^{k}(n)$$

Performance evaluation Baseline algorithms

Scenario

[Glomosim + NC]

Downlink Topology

Cross Topology

Grid Topology

Wireless Channel

o Rayleigh fading channel: Average channel SNR levels; {3,5,7,9,11} dB

Video Sequences

- o Standard streams: Carphone, Foreman, Mother&Daughter, etc.
- o H.264/AVC, 1I:9P frames
- o 70 kbps, 30 fps, 250B packets on average
- o Delay budget 100 ms. Random delay in forward ch., avg= 4ms.

Performance evaluation Video quality - downlink topology

Average PSNR for 5 dB channel SNR, 3 Receivers, 100 ms Playout Deadline, 500kbps Tr. Data Rate

avg PSNR (dB)	Carphone	Foreman	Mother&Daughter
Original NC-RaDiO NCVD NCTD NCV NCT MCT MCT	29.95	28.70	40.74
	28.46	27.51	35.08
	27.98	26.87	35.36
	24.91	24.60	28.61
	25.40	25.14	28.66
	23.95	24.38	27.19
	25.17	24.61	32.12
	22.32	22.64	23.84

Video quality - downlink topology

Average PSNR - 100ms Delay Budget, 3 Receivers, 500 kbps Tr. Data Rate.

Throughput - downlink topology

Throughput - 100ms Delay Budget, 3 Receivers, 500 kbps Tr. Data Rate

Application-level throughput

MAC-level throughput

Video quality - downlink topology

Average PSNR - 100ms Delay Budget, 5dB channel SNR, 1 Mbps Tr. Data Rate

Video quality - cross topology

Average PSNR - 100ms Delay Budget, 5dB channel SNR, 1.3 Mbps Tr. Data Rate, 5 number of nodes

Video quality - grid topology

Average PSNR - 100ms Delay Budget, 5dB channel SNR, 1 Mbps Tr. Data Rate

Summary

- Designed video-aware network coding algorithms
- Improved video quality up to 5dB
- Without hurting MAC throughput
- Heuristics close to the optimal

My work

- Interaction and joint optimization of NC and higher layers over wireless mesh networks
 - NC + video streaming
 - o Prioritized transmission
 - o Delay requirements
 - Rate requirements
 - o NC + TCP
- o Dynamic FEC for Video

Delay optimized network coding for video

[Seferoglu, Markopoulou, ICC 10]

o Key observation: there is a trade-off between delay and throughput

My work

- Interaction and joint optimization of NC and higher layers over wireless mesh networks
 - NC + video streaming
 - o Prioritized transmission
 - o Delay requirements
 - o Rate requirements
 - o NC + TCP
- o Dynamic FEC for Video

Rate control for video with network coding

[Seferoglu, Markopoulou, Packet Video 09]

o Key observation: video rate affects the network coding opportunities

Delaying some scenes and optimizing the rate allocation create more network coding opportunities.

My work

 Interaction and joint optimization of NC and higher layers over wireless mesh networks

o NC + video streaming

o NC + TCP

o Dynamic FEC for Video

Motivation

- Problem: TCP over COPE does not fully exploit the network coding potential
- o Our intuition:
 - Not enough coding opportunities due to TCP burstiness
 - Coded flows do not compete for resources

Motivation

- Problem: TCP over COPE does not fully exploit the network coding potential
- o Our intuition:
 - Not enough coding opportunities due to TCP burstiness
 - Coded flows do not compete for resources

o Proposed Solution:

- Formulate network utility maximization (NUM) problem
- Modify queue management schemes (NCAQM)
- Make no changes to TCP and MAC
- TCP + NCAQM doubles the performance of TCP+COPE

Network utility maximization

Formulation

Network utility maximization Solution I:

$$\max_{m} \sum_{s \in S_k} H_h^{s,k} \alpha_h^{s,k} x_s m_h^{s,k}$$

$$s.t. \sum_{s \in S_k} m_h^{s,k} = 1$$

$$\begin{aligned} \max_{x,\alpha,\tau} \ \sum_{s \in S} U_s(x_s) \\ s.t. \ \sum_{k \in K_h} \sum_{s \in S_k} H_h^{s,k} \alpha_h^{s,k} x_s (m_h^{s,k})^* \leq R_h \tau_h, \ \forall h \in A \\ \sum_{h(J)|h \in A} \sum_{k \in K_h|s \in S_k} \alpha_h^{s,k} &= 1, \ \forall s \in S, i \in P_s \\ \sum_{h \in C_q} \tau_h \leq \gamma, \ \forall C_q \subseteq A \end{aligned}$$

Network utility maximization Solution II:

Parameter

Rate Control
$$x_s = (U_s')^{-1} \left(\sum_{h \in A} \sum_{k \in K_h | s \in S_k} q_h H_h^{s,k} \alpha_h^{s,k} (m_h^{s,k})^* \right)$$

Traffic Splitting

$$\min_{\alpha} \sum_{h(J)|h\in A} \sum_{k\in K_h|s\in S_k} q_h H_h^{s,k} (m_h^{s,k})^* \alpha_h^{s,k}$$

$$s.t. \sum_{h(J)|h\in A} \sum_{k\in K_h|s\in S_k} \alpha_h^{s,k} = 1, \ \forall i \in P_s$$

Scheduling
$$\max_{\tau} \sum_{h \in A} q_h R_h \tau_h$$

$$\sum_{h \in C_q} \tau_h \leq \gamma, \ \forall C_q \subseteq A$$

Network coding-aware queue management (NCAQM)

Modifications to the protocol stack by mimicking the structure of the optimal solution

	Implementation Summary
Queue management (NCAQM)	Network codingPacket dropping
TCP	No change (TCP-SACK)
MAC	No change (802.11)

Minimal and intuitive

NCAQM

Maintaining queues and network coding

Parameter (Queue) Update

$$q_{h}(t+1) = \left\{ q_{h}(t) + c_{t} \left[\sum_{k \in K_{k}} \max_{s \in S_{k}} \left\{ H_{h}^{s,k} \alpha_{h}^{s,k} x_{s} \right\} - R_{h} \tau_{h} \right] \right\}^{+}$$

- Maintain state per hyperarc queue
- Store coded packets

NCAQM

Maintaining queues and network coding

Parameter (Queue) Update

$$q_{h}(t+1) = \left\{ q_{h}(t) + c_{t} \left[\sum_{k \in K_{k}} \max_{s \in S_{k}} \left\{ H_{h}^{s,k} \alpha_{h}^{s,k} x_{s} \right\} - R_{h} \tau_{h} \right] \right\}^{+}$$

Implementation

- Store all packets in an output queue \mathcal{Q}_i
- o If there exists network coding opportunity, packets are coded and stored in the queue
- Hyperarc queue size is determined heuristically;

$$Q_h = \sum_{k \in K_h} \max_{s \in S_k} \left\{ H_h^{s,k} \overset{\sim}{\alpha}_h^{s,k} Q_i^s \right\}$$

Estimated traffic splitting parameter

Number of packets at node *i* from flow s

NCAQM

Rate control and packet dropping

Optimal Rate
Control

$$x_s = \left(\sum_{h(i) \in P_s} q_{h(i)}^s\right)^{-1} -$$

Sum of network coded queue sizes across all nodes on the path

Implementation

Network coded
$$\Phi_i^s = \sum_{h(J)|h\in A} Q_h \overset{\sim}{w_h}$$
 queue size

$$\widetilde{w}_h = \sum_{k \in K_h | s \in S_k} H_h^{s,k} \widetilde{\alpha}_h \widetilde{\alpha}_h m_h$$
 Estimated dominance indicator

- o Upon congestion, flow "lengths" Φ_i^s are compared. A packet from the largest flow is dropped. This mimics the optimal rate control.
- o Φ_i^s is the "length" of per flow queues. The "length" counts packets over all Q_h in which a flow is dominant (has the largest number of packets).

Multi-hop network coding

- Network utility maximization problem is extended for multi-hop network coding
- o Distributed solutions are derived
 - Only traffic splitting part changes
 - o In practice, traffic splitting parameter is estimated
 - NCAQM is directly applied to multi-hop network coding

Performance evaluation

Scenarios

[Glomosim + NC]

A & B Topology

Cross Topology

Grid Topology

Performance evaluation

Throughput improvement compared to noNC

	TCP+COPE (%)	TCP+NCAQM (%)	Optimal (%)
A & B	12	27	33
Cross	16	31	60
X	10	22	33
Grid	8	19	-

TCP+NCAQM doubles the improvement of TCP+COPE

Performance evaluation

Throughput improvement vs queue size

Summary

- Proposed queue management schemes to improve network coding performance of TCP
 - Formulated network utility maximization problem and proposed a decomposed solution
 - Modified queue management schemes considering the structure of the optimal solution
 - Simulations show that our scheme (NCAQM) doubles the improvement of TCP+COPE

My work

 Interaction and joint optimization of NC and higher layers over wireless mesh networks

o NC + video streaming

o NC + TCP

Dynamic FEC for Video

Dynamic FEC for video over WLANs

[Seferoglu, Gurbuz, Ercetin, Altunbasak, ICC 05, ICIP 06, Image Com. 07]

Packet scheduling and dynamic FEC

Packet scheduling, dynamic FEC, and rate selection

Dynamic FEC for TFRC flows

[Seferoglu, Kozat, Civanlar, Kempf, Packet Video 09]

- Predict congestion induced loss: Loss and delay characteristics (RTT/FTT delays and their derivatives)
- o Dynamic FEC algorithms:
 - Media-unaware dynamic FEC: Use the predictor for dynamic FEC protection based on the predicted level of congestion so as to mask congestion losses
 - Media-aware dynamic FEC: Use the predictor output as side information to select the FEC and original media packets within each FEC window in a rate-distortion optimized way

My work

Publications

o NC + video streaming

- H. Seferoglu, A. Markopoulou, "Delay-Optimized Network Coding for Video Streaming over Wireless Networks," to appear in Proc. of ICC'10, South Africa, May 2010.
- H. Seferoglu, A. Markopoulou, "Video-Aware Opportunistic Network Coding over Wireless Networks," in IEEE JSAC, Special Issue on Network Coding for Wireless Communication Networks, vol. 27(5), 2009.
- o H. Seferoglu, A. Markopoulou, "Distributed Rate Control for Video Streaming over Wireless Networks with Intersession Network Coding," in Proc. of Packet Video'09, Seattle, May, 2009.
- o H. Seferoglu, A. Markopoulou, "Opportunistic Network Coding for Video Streaming over Wireless," in Proc. of Packet Video'07, Lausanne, Switzerland, Nov. 2007.

o NC + TCP (Rate Control)

- H. Seferoglu, A. Markopoulou, "Network Coding-Aware Queue Management for Unicast Flows over Coded Wireless Networks," to appear in Proc. of NetCod'10, Toronto, Canada, June 2010.
- H. Seferoglu, A. Markopoulou, U. C. Kozat, "Network Coding-Aware Rate Control and Scheduling in Wireless Networks," in Proc. of ICME'09, NY, June, 2009.

Publications

o Dynamic FEC for Video

- H. Seferoglu, U. C. Kozat, M. R. Civanlar, J. Kempf, "Congestion State-Based Dynamic FEC Algorithm for Media Friendly Transport Layer," in Proc. of Packet Video'07, Seattle, May, 2009.
- o H. Seferoglu, O. Gurbuz, O. Ercetin, Y. Altunbasak, "Rate-Distortion Based Real-Time Wireless Video Streaming," *Signal Processing: Image Communication.* Vol. 22-6, pp.529-542, July, 2007.
- o H. Seferoglu, O. Gurbuz, O. Ercetin, Y. Altunbasak, "Video Streaming to Multiple Clients over Wireless Local Area Networks," *in Proc. of IEEE ICIP'06*, October 8-11, 2006.
- o H. Seferoglu, Y. Altunbasak, O. Gurbuz and O. Ercetin, "Rate Distortion Optimized Joint ARQ-FEC for Real-Time Wireless Multimedia," *in Proc. of IEEE ICC'05*, May 16-20, 2005.

Current and future work

Thank you!

hseferog@uci.edu
http://newport.eecs.uci.edu/~hseferog/